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A Simple Mixed-Based Approach for Thin-Walled Composite
Blades with Two-Cell Sections
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In this work, a mixed beam approach that combines both the stiffness and the flexibility

methods has been performed to analyze the coupled composite blades with closed, two—-cell

cross—sections. The Reissner’s semi-complementary energy functional is used to derive the beam

force-displacement relations. Only the membrane part of the shell wall is taken into account to

make the analysis simple and also to deliver a clear picture of the mixed method. All the cross-

section stiffness coefficients as well as the distribution of shear across the section are evaluated

in a closed-form through the beam formulation. The theory is validated against experimental

test data, detailed finite element analysis results, and other analytical results for coupled com-

posite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the

theory, an accuracy comparable to that of two-dimensional finite element analysis has been

obtained for cases considered in this study.
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1. Introduction

In general, the composite rotor blades are built-
up structures made of different materials for the
skin and spar and are normally of closed single-
or multi-celled cross-sections and are thin-wall-
ed except near the root where they become thick-
walled. In the analysis of composite blades, there
is a need to properly model the local behavior of
the shell wall as a reaction to the global defor-
mation of the blade (Jung et al., 1999).

During last couple of decades, a few selected
research activities have been devoted to model
and analyze elastically-coupled composite beams
and blades with multi-cell sections (Mansfield,
1981 ; Chandra and Chopra, 1992 ; Volovoi and
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Hodges, 2002 ; Badir, 1995 ; Jung and Park, 2005) .
Most of the beam approaches found in the litera-
ture have been formulated through either a dis-
placement (Smith and Chopra, 1991 ; Chandra
and Chopra, 1992; Song and Librescu, 1997; Shim
and Na, 2003) or a force method (Mansfield, 1981 ;
Libove, 1988). The former is based on a suitable
approximation to the displacement field of the
shell wall of the section. The assumed displacem-
ent field is used to compute the strain energy of
the beam, and the beam stiffness relations are ob-
tained by introducing relevant energy principles.
The stiffness method is quite straightforward and
easy to apply but there is no systematic method to
determine the distribution of warpings that can be
an important factor in enhancing the accuracy of
the analysis particularly for thin-walled blades.
While, in the force method, also called the flexi-
bility formulation, the assumed direct stress field
in the shell wall is used to obtain the distribution
of the shear stress and the associated warpings
directly from the equilibrium equations of the
shell wall. The flexibility method provides a sys-
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tematic method to determine the warping func-
tions and generally leads to better correlation
with experimental test data.

Recently, the mixed method that combines
both the displacement and force methods effec-
tively by using the variational-asymptotic frame-
work (Volovoi and Hodges, 2002 ; Badir, 1995)
or the Reissner’s functional (Jung and Park, 2005)
has been reported in the literature. These newly
developed beam theories allow treatment of arbi-
trary cross-section geometries and material dis-
tributions. The bending shell strain measures as
well as the membrane shell strains are incorpor-
ated in these approaches to take into account the
wall thickness effect of the beam section. It has
been shown that the mixed theories are generic
and accurate enough for the analysis of elastic-
ally-coupled, thin-walled composite blades. Even
though more rigorous representation of beam
kinematics is truly desirable for refined analysis,
a simple but generic approach that can give us
a physical insight into the complex coupling mec-
hanism is needed as a way to improve the basic
understanding of composites necessary in the de-
sign of a composite blade.

In the present work, a simple approach based
on a mixed method is proposed by taking into
account the membrane shell of the section wall
toward modeling and analyzing the thin-walled
composite blades with two-cell sections. A clos-
ed-form expression is obtained for the cross-sec-
tion stiffness coefficients as well as the distri-
bution of shear across the section. The theory is
validated by comparison of the static response
of coupled composite blades with experimental
results found in the literature and also with those
of a detailed finite element analysis using the
MSC/NASTRAN.

2. Formulation

Figure 1 shows the geometry and coordinates
of a thin-walled composite blade with two-cell
airfoil section. Two different systems of coordi-
nate axes are used : an orthogonal Cartesian co-
ordinate system (x, y, z) for the blade, where x
is the reference axis of the blade and y and z

are the transverse coordinates of the cross sec-
tion ; a curvilinear coordinate system (x, s, %) for
the shell wall of the section, where s is a contour
coordinate measured along the middle surface of
the shell wall and # is normal to this contour
coordinate. The global deformations of the beam
are (U, V, W) along the x, v and z axes, and ¢
is the elastic twist about the x-axis. The mid-
plane (contour) shell deformations are (u°, v?,
vy) along the x, s and # directions, respectively.
From a geometric consideration as depicted in
Fig. 2, the mid-plane shell displacements can be
obtained in terms of the beam displacements and
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Fig. 1 Geometry and coordinate systems of a two-
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Fig. 2 Coordinates and sign convention
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rotations :
Vi=Vy s+ Wzst+rd

0 (0
n=Vzs— Wys—q¢

where the superscript 0 denotes that the value is
defined at the midplane contour of the shell wall
and 7 and g are the coordinates of an arbitrary
point on the shell wall in the (%, s) coordinate
system (see Fig. 2), and the comma refers to the
derivative with respect to the coordinate. Based
on a small strain assumption, the membrane shell
strain measures are given by :
—,,0
Exx ] U,x . (2)
Yxs— U,s + Vt,x
By substituting Eq. (1) into the shear strain Yxs N
Eq. (2) and integrating this partially with respect
to x, the following relation is obtained,

Yxs=— u,os + Vayst Wazst+ 7’¢,x <3>

From the geometric relationships depicted in Fig.
2, the shell shear strain yxs can also be written in
terms of the shear strains in the Cartesian system
of coordinates,

Yxs=Yxy COS O+ Y3z SIN O=7xyV,s+ Yx22s  (4)

where @ is the angle between the positive x and s
directions (see Fig. 2), and yx and yx. represent
the transverse shear strains of the blade and are
related to the cross-section rotations /Ay and f:
about the y and z axes, respectively, as:

By="7xz— Wi
Bz=vx— Vx

The positive direction for the section rotations is
defined in Fig. 2. By equating Egs. (3) and (4)
and integrating with the contour coordinate s, the

(5)

axial strain can be obtained in terms of the beam
displacement derivatives :

Exx— (_],x+ZBy,x+sz,x_Q_)¢,xx <6>

where @ is the sectorial area of the section
(Gjelsvik, 1981).
tion of Eq. (6) forms the basis of the displaceme-
nt method for thin-walled blades.

Assuming the hoop stress flow Nis is negligibly

The strain-displacement rela-

small, the constitutive relations for the shell wall
of the section can be written as

Sung Nam Jung and Il-Ju Park

{Nxx}:{Ah A{e} {e} -
Nxs A{G AéG 7.7(8
with
2
AL=An _713;
r o Anfss
Ale=A1s Agp (721)
2
Abe=Aes— ﬁzz

where A;; are the laminate stiffness coefficients in
the classical lamination theory (Jones, 1975).
Note that only the membrane action of the shell
wall is considered in the above constitutive rela-
tions. In case where the bending strain measures
become important, these should also be incorpor-
ated in the analysis (Jung et al., 2002). It is con-
venient to write Eq. (7) in a semi-inverted form

as:
{Nxx}_[ Anre Am]{ Exx} (8)
Yxs _Am Arr Niys
where
72 4
Ane=AL— 16 , Apy= Aie , Ayy= 1, (8a)
66 66 Aés

In order to assess the semi-inverted constitutive
relations into the beam formulation, a modified
form of Reissner’s semi-complimentary energy
functional @ is introduced (Murakami et al.,
1996) :

Dr :%[Nxx€xx* 7stxs:| (9>

The stiffness matrix relating beam forces to beam
displacements is obtained by using the variation-
al statement of the Reissner functional which is
given by

[
5 / /C (@ + 7xsNs) dsdrx =0 (10)

where / is the length of the blade and C is the
contour of the closed section. The parenthesis of
Eq. (10) represents the strain energy density of
the blade. As is expected from Eq. (8), the shear
flow Nys is treated as an unknown variable unlike
the displacement-based approach, while the axial
strain is treated as the known. The shear flow Nxs

Copyright (C) 2005 NuriMedia Co., Ltd.
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is determined from the continuity condition of
the axial displacement of the shell wall which is
written as :

/u?sdszo (11)
C

The shear strain can be rewritten by using Egs.
(3) and (8) as:

Yxs= — Anr&xxt AzyNxs

12
= u,os + ny,s + sz,s + 7¢,x ( >

Integrating Eq. (12) from 0 to s and invoking the
continuity condition (Eq. (11)) for each wall of
the section, one can obtain the following equa-
tions

(a1+as) %1*&3%11:2A1¢,x‘|‘/ AmExde
C1+Cs
(13)
—asni+ (@t o) nn=2Aud x+ /C o Amexnds

where 7; and 7 are unknown shear flows for
each cell of the section, A; and Aj; are enclosed
areas of the two cells, and C; (i=1, 2, 3) are the
contour lengths of the section segments (see Fig.
3). Considering the geometry in Fig. 3, the shear
flow components corresponding to each of the
three curves Ci, Cs, and C; lead to #;, ny and
nr— nu, respectively. The a1, @, and as appeared
in Eq. (13) are defined as

61/1:'/;114770’3; 02:_/CZA77d3; a32L3A77d3<14>

By substituting the axial strain Eq. (6) into Eq.
(13), the unknown shear flows are determined
as

{n}=0ras} (15)

where

Fig. 3 Definition of a two-cell section
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{n}:an %IIJT

[f]:|:fx1 fyl le f¢1 fml] (16)

fxz fyZ fzz f¢2 fa)z
{Cjb}:L Ux By,x Bz,x b.x ¢,xxJT

where the superscript 7" denotes the transpose of
a vector. The components of [f] in Eq. (16) are
given in Appendix (Egs. (al) ~ (a2)).

Inserting Eqgs. (3) and (13) into Eq. (9) and
using Eq. (15), one can obtain the following set
of beam forces-displacements relations,

{Fb}:LNMy M. TMwJTZ[Kbb]{Qb} (17)

where N is the axial force, M, and M, are bend-
ing moments about y and z directions, respec-
tively, T is the twisting moment and M, is the
Vlasov bi-moment. The cross-section stiffness
matrix [Kps] relates the cross-section force and
moment resultants with beam displacements in
an Euler-Bernoulli level of approximation for ex-
tension and bending and Vlasov level for torsion.
The elements of [Kps] for thin-walled blades
with a two-celled section are obtained in a clos-
ed-form as in Eq. (a4).

3. Results and Discussions

Numerical investigation has been performed to
validate the current analysis with available li-
terature. Thin-walled, two-cell composite blades
with extension-torsion or bending-torsion cou-
plings are considered in this study. Fig. 4 shows
the schematic of the two-cell blade section fabri-
cated and tested by Chandra and Chopra (1991,
1992). The section has a NACA 0012 contour
and consists of D-shape spar, web and skin. The
blade is clamped at one end and warping re-
strained at both ends. The geometry and the ma-
terial properties of the blade are given in Table 1.
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o

Fig. 4 Schematic of a two-cell airfoil section
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Blades with six different layup cases representing
extension-torsion (Blade 1 to 3) or bending-tor-
sion (Blade 4 to 6) couplings are examined. Table
2 shows the details of the layup for the cases. The
positive fiber angle is defined as having a right
angle with respect to the outward normal vector #
along the contour of the section wall (see Fig. 1).

Figure 5 shows the comparison results of the
tip bending slopes for the extension-torsion cou-
pled blades (Blade I to 3) subjected to a unit tip
shear load. As is seen in Table 2, Blades 1 to 3
consist of [0/@]s spar, [0/0]2 web and [§/— 0]
skin where the ply angles are varied from 15
(Blade 1), 30 (Blade 2) and 45 (Blade 3) degrees.
The present predictions are compared with the
experimental test data and the theoretical results
obtained by Chandra and Chopra (1992) along
with those of the two-dimensional MSC/NAS-
TRAN analysis. For the NASTRAN results, a
total of 15,800 CQUAD4 plate/shell finite ele-
ments leading 77,721 degrees of freedom are used.
The finite element meshes used for the NAS-

Table 1 Geometry and material properties of
graphite-epoxy blades

Eu 131 GPa (19X 10° psi)
Es 9.3 GPa (1.35X10° psi)
Gz 5.36 GPa (0.85%10° psi)
Vi2 0.40
Ply thickness 0.127 mm (0.005 in)
Airfoil NACA 0012
Length 641.4 mm (25.251n)
Chord 76.2mm (3 in)

Airfoil thickness 9.144 mm (0.36 in)
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TRAN analysis are presented in Fig. 6 for a re-
ference purpose. For the present results, the con-
tour in the rear and front cells of the NACA 0012
section is divided into 100 and 800 linear seg-
ments, respectively, only to perform the contour
integrals numerically for the section. As can be
seen in Fig. 5, the predictions obtained by the
present method are in excellent agreements with
experimental test data as well as with the MSC/
NASTRAN results. The error between the present
results and the experimental test data is within
4.3% for all the cases. The variance between the
current predictions and those of Chandra and
Chopra (1992) is thought to be due to the dif-
ferences in the constitutive relations adopted in
the two theories : The current approach used the

0.03
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B MSCMNASTRAN 20 ? <
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Fig. 5 Comparison of tip bending slopes for exten-

sion-torsion coupled blades under unit a tip
shear load

Table 2 Layup cases of elastically-coupled composite blades

Spar
Cases Web Skin
Top Flange | Bottom Flange
] ) Blade 1 [0/15], [0/15], [0/15], [15/—15]
Extension-Torsion Blade 2 [0/30]» [0/30], [0/30]. [30/—30]
Coupled Blades
Blade 3 [0/45], [0/45], [0/45], [45/—45]
. ) Blade 4 [0/15]4 [0/—15], [0/£15/0], [15/—15]
Bending-Torsion Blade 5 [0/30] [0/—30]s | [0/£30/0], | [30/—30]
Coupled Blades
Blade 6 [0/45]4 [0/—45], [0/£45/0], [45/—45]
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zero hoop-stress—flow assumption (Ng=0) while
a zero in-plane-strain assumption (yss= #ss=0)
was used in their approach (Chandra and Chopra,
1992). It should be noted that the bending shell
strain measure as well as the membrane strain are
incorporated in the theory (Chandra and Chopra,
1992) whereas only the membrane shell measure
is included in the present analysis. The result in-
dicates that, despite a simple model, accurate an-
alysis results are obtained with the present mixed

Fig. 6 Two-dimensional meshes for the MSC/
NASTRAN analysis
0.004
O Present
W Experiment [1992]
B Chandra and Chopra [1992]
B MSCMASTRAN 2D
0.003
T
£
& 0.0
I
=
2
=
0.001
0.000
Blade 1 Blade 2 Blade 3
Fig. 7 Comparison of tip twist angles for extension-

torsion coupled blades under a unit tip torque
load
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method.

Figure 7 presents the tip twist results obtain-
ed respectively for Blades 1 to 3 under a unit tip
torque load. A good correlation with experiment-
al results is clearly seen in the figure. For this
case, the errors are within 4.7% for the direct tip
twist response.

Figures. 8~9 show the comparison results of
both the tip bending slope and the induced tip
twist response, respectively, for the bending-tor-

002

Fresent

Expenment [1991]
Chandra & Chopra [1991)
MSCMASTRAN 20

gEomo

S0
2
oo
A

2

T,
s
RN,

S
2
sl

et
<
>

‘v
%
5%

!

R
IR

o
e
o

22505
Saetatatetele!

o T
0 oty
L AP

el

Bending Slope (rad)
(=]
2
T
e o;v‘a"

o,

S
¥
o
o1ul

...
5
Y,

%
L
o
3

RN
i
%
5

o
£S5
3
2%
%

A
T,
S

I

0

%
.
.
.
%
%
%
/;

0
5
&

L
i
ot
e

S

.
¥y

<]

0.00

Blade 4 Blade 5 Blade &
Fig. 8 Comparison of tip bending slopes for bend-
ing-torsion coupled blades under unit a tip

shear load

0.004

O Present
W Experiment (1291
B Chandra & Chopra [1391)

0003

0002

Induced Tip Twist (rad)

0.001

0,000 o / o

Blade 4

Blade 5 Blade &
Fig. 9 Comparison of induced twist angles for bend-
ing-torsion coupled blades under a unit tip

shear load

Ltd.



2022

sion coupled blades (Blade 4 to 6) which are
subjected to a unit tip shear load. The details of
the layup for Blades 4 to 6 are given in Table 2.
In this case, the non-zero ply angles used in the
top and bottom flanges of the spar result in a
bending-torsion coupling while the layups in
both the web and skin produce no elastic cou-
plings. The twist deformation is induced because
of the bending-torsion couplings when the load is
applied at the tip of the blades. As can be seen
from Figs. 8~9, the present results are in good
agreements with experimental test data. The error
is less than 10% for the direct bending response
(Fig. 8) and 8.8% for the bending-induced twist
response (Fig. 9). It is observed that the results
obtained by the present method present better
correlations with the experimental results than
those obtained by Chandra and Chopra (1991).
One thing to be addressed in Fig. 9 that the cur-
rent predictions show a softening behavior com-
pared to the experimental test data. This trend
seems obvious with a view of the fact that the
current theory takes into account the thickness
effect of the shell wall as a membrane shell that
actually leads to a more flexible representation of
the structure. In some cases where the thickness
effects of the shell wall become more important,
the bending shell strain measure as well as the
membrane measure should be incorporated in the
analysis. As mentioned in the Introduction sec-
tion, however, this can make the theory more in-
volved and complex to an unacceptable and un-
realistic level.

Figures 10~11 show the comparison results of
the direct tip twist response as well as the tor-
sion-induced bending response for Blades 4 to 6
undergoing a unit tip torque load. The correla-
tion with experimental results is good for the di-
rect twist response (Fig. 10) and fair for the in-
duced response (Fig. 11). A large variation be-
tween the three different set of approaches is no-
ticed especially for Blade 5 case in the induced
response (Fig. 11). For this specific case, the
error between the current predictions and the ex-
perimental results is about 15%. A refined experi-
mental test along with a more sophisticated load-
ing and clamping mechanism seems necessary to

Sung Nam Jung and Il-Ju Park

0003

BEE0O

Present

Expenment [1991]
Chandra & Chopra [1991]
MSC/NASTRAN 20

R
o]
e

5%

0002 -

e
KL
Setatetitatetatatatitet

Tip Twist (rad)

.
c:»:c:oé
SR

0001 =

o0
5
Wit

B

g
s

A
R

o
=

2o
s

het

tels!

.
£

2y
ey
A,

e
I
2

KK

ol

b5

0000 b—

Blade 4

Blade 5

Blade &

Fig. 10 Comparison of tip twist angles for bending-

torsion coupled blades under unit a tip tor-

que load
00003

O Present
B Experiment [1991)
E3 Chandra & Chopra [1991]

)

g

@ oo L

-5

2

]

£ 7

-y

=

L

m

-

@

S oooot [ /

=

£

0 0000 . 77 7
Blade 4 Blade 5 Blade &

Fig. 11 Comparison of induced tip bending slopes
for bending-torsion coupled blades under a
unit tip torque load

enhance the correlation between the results. As
in the previous case, a slightly better correlation
with experimental results is observed in compari-
son with the predictions obtained by Chandra
and Chopra (1991).

4. Concluding Remarks

In the present work, a closed-form analysis for
coupled composite blades with multiple cell sec-

Copyright (C) 2005 NuriMedia Co., Ltd.
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tions was performed. The analysis model included
the effects of elastic couplings, shell wall thick-
ness, torsion warping and constrained warping.
The beam force-displacement relations of the
blade were obtained by using the Reissner’s semi-
complementary energy functional. All the cross-
section stiffness coefficients as well as the distri-
bution of shear across the section were obtained
in a closed-form through the beam formulation.
The theory was correlated with experimental test
data, other theoretical results and detailed finite
element results for bending-torsion or extension-
torsion coupled composite blades with a two-cell
airfoil section. In general, good correlation of re-
sponses with experimental results was obtained
for the cases considered in this study. The error
was generally less than 5% for blades with exten-
sion-torsion couplings and 15% with bending-
torsion couplings.
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Appendix

The shear flow components appeared in Eq.
(16) are given by :

fa={larta) [ o Andstas i o Amds)/A
fn={(e+as) /c1+c3A”’st + as/c2+c3A”’st }A

fz1={(az+a/3)/CHCSAmyds+as_/cz+caAmyds}/A (al)
f¢1:{<a'2‘|‘0!3> '2A1‘|‘0!3'2A11}/A

for=—{(es+ ) /;1+C3An7@d3 + CYs/cﬁ%Am@ds }/A
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fe=la [ Andst(ata) [ Ands)/A fu=—(a | Anddstata) [ Awids)/A
h
fyzz{a/S/ An72d3+<a'1+a'3)/ AnyZdS}/A <3.2> where
Ci4Cs CatCs A=ma+ o+ asm (33)
fn:{a,s/ Anyyds+(al+a3)/ Awyds}/A The a; (i=1, 3) are defined in Eq. (14). The
Citle Cato elements of the (5X5) stiffness matrix [Kus] in
For={os2A1+ (ot a) 2Au}/A Eq. (17) are obtained by :

K (1,1) :/Anst‘i‘aflfgl +aofZe +as(fr1— )
Kbb(l,z) =K (2,1> :/Anezals+a1fx1fy1+a'2fx2fy2+ as <fx1_fx2) (fyl_fyz)

Kbb(ls3) :Kbb<3,1> :fAnsyds‘f'd1fx1fz1+afzfx2fzz+ as (fxl_fxz) (le_fzz>
Koo (1,4) =Ko (4,1) = arfarSfo+ tofrafoet as(faa— Fxz) (For— Fo2)
K (1,5) =Ky (5,1) :'}{;Ans(Z)dS+a1fx1fw1+a’zfxszz+a'3 (frr—fx2) (for—foz)

Ky (2,2) :/Anszzds + (l’lfj%l + a/szz +as (fyl_fy2> 2

Kbb (2,3) :Kbb (3,2> :fAnsyZdS + alfylle + a’zfnyz2+ as (fyl *fy2> (le *fZZ)
Kb (2,4) =Ky (4,2) = a1 forfor+ aafvaf oot as(for— fr) (For— fo2)
Ko (2,5) =K (5,2) :f—Ane(Z)zds+a1fy1fm1+azfyzfmz+a3 (fr—Iv2) (for— fuw2)

Kbb(3,3) =j£ney2ds+a1f31 +a’1fzzz +as (le_fzz>2
Koy (3,4) =K (4,3) =i farf o1+ aefzof o2+ as (fo1— fz2) (For—Fo2)
Koo (3,5) =K (5,3> Z'}[*Anea’)yds + (11lefw1+ azfzzfmz+ as (fz1*fz2) <fw1 *fwz)

Ko (4,4) :a’lfgl + a/zfgz +as (f¢1_f¢2> 2
K (4,5) = Kus (5,4) = arforfor+ aefoofwrt as(for— fo2) (for— fu2)

Ky (5,5) = fAne(Z)ZdS +anfé +aefis+as(for— fu2)?
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